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The analytic solution of the Lippman-Schwinger seismic inverse
problem in three spatial dimensions, assuming a point source and
a constant-density earth model, is valid in the spatial zero frequency
limit. It is expressed as a two-dimensional inverse Fourier transform
followed by an inverse Laplace transform. For the case of laterally
homogeneous velocity, the analytic solution is correct when applied
to a forward solution of the wave equation for a single-interface
velocity model. Error surfaces of the non-linear, iterative, least-
squares inversions corresponding to multiple, constant-velocity,
horizontal layers have an absolute minimum at or near the location
of the solution parameters for zero and low frequencies. The error
surface for a scattered wavefield dataset generated by 3D finite-
difference modeling combined with a priori constraints, produces
nearly correct solutions for a range of low frequencies. Thus, this
approach has potential for applicability to field data. © 1995 Aca-
demic Press, Inc.

1. INTRODUCTION

The wave-equation has been for some time the basis for
modern inversion techniques to estimate the matenal properties
of the earth’s subsurface from observations of the scatiered
wavefield. Even so, approaches have varied widely. Pre-stack
migration may be considered a simpler form of wave-equation
inversion [2, 15, 21]. Several authors have studied the inversion
problem for velocity and the location and character of seismic
reflectors [71. Seismic inversion is closely related to migration,
but the solutions resulting from inversion quantitatively account
for reflections and yield spatial changes in parameters that cause
the reflections (e.g., density and bulk modulus).

Inversion for velocity can also be expressed as a time-domain
form of Born inversion [22]. A classic solution to the scattering
problem, Born inversion utilizes perturbation and approxima-
tion techniques. It has recently undergone serious investigation
[12] and comparison with migration techniques [19].

Another inversion approach assumes a parameterized model
and attempts to estimate the model parameters from the scat-
tered wavefield, creating a very large non-linear, iterative prob-
lem [20], Formulations for inversion have also been done in
the slowness-time intercept domain [5, 11]. An extensive review

and summary of wave-equation inversion techniques with a
large collection of references is given in [22].

This study uses an inversion method based upon the Lipp-
man—Schwinger form of the wave equation. One popular solu-
tion of this equation uses the Born approximation. The Born
approximation linearizes the wave equation by ignoring trans-
missions and secondary reflections. It requires an a priori esti-
mate of the mediumn parameters in the constant or slowly vary-
ing background function. The Born approximation solves for
a perturbation of the background; the scattered wavefield is
attributed to this perturbation. Since the background is defined
a priori, solving for the perturbation amounts to solving the
entire problem. A solution that develops the Lippman—
Schwinger equation and the Born approximation for precritical
offset data is given in [6]. WKBJ Green’s operators are used
1o solve for density and bulk modulus, assuming a smoothly
varying background. Another solution using the Born approxi-
mation, with constant background for velocity and density,
shows that multiple datasets are required to solve for multiple
parameters [18].

Many difficulties with the Born approximation have been
discovered and analyzed. Parameter variations can cause arti-
facts in the perturbation solutions of other parameters [24].
Because the Born approximation ignores multiples, the quality
of the solution degrades with depth [24]. Alsc, Born solutions
are sensitive to the choice of the background functions {23].

The theoretical framework for the present paper is an analytic
solution of the Lippman—Schwinger equation [16] solved in the
low-frequency limit for a point source in a three-dimensional,
constant-density medium, This solution is an alternative to the
Born approximation; it makes no assumptions about the back-
ground or the perturbation. It fully incorporates pre- and post-
critically reflected data and ignores none of the scattered wave-
field in the zero frequency limit. In this limit, it incorporates
all non-linear wavefield phenomena such as multiples and trans-
mission effects, potentially avoiding the shortcomings of Born
inversion. Being a 3D formulation enhances its importance as
3D surveys become increasingly common.

As a first step, this investigation assumes a constant-density
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medium. This constraint can be relaxed; two contrasting solu-
tions for density and bulk-modulus perturbations with respect
to a constant background and inversion solutions in 1D and
2D are presented in [17, 13], respectively.

A review of the theoretical basis for analytical and numerical
experimentation is presented in the next section. The solution
. is shown to reduce to an inverse Laplace operation when the
velocity of the earth model is laterally homogeneous. An analyt-
ical expression for the reflected wavefield from a single velocity
interface is then used as a test; when substituted into the inverse
solution, the correct expression for the velocity is found.

When the ¢arth model is assumed to consist of horizontal,
constant-velocity layers, the inverse problem can easily be cast
into a non-linear, iterative, least-squares problem. The model
parameters to be determined are the interface depths and the
layer velocities. A two-layer case is then investigated using a
numerical dataset computed from the analytical expression. The
solution to the non-linear problem gives the correct depth and
velocity for very low frequencies but yields less accurate solu-
tions as frequency increases.

Finally, an independent dataset is generated with a 3D finite-
difference program and used as input to the non-linear problem,
For a range of low frequencies, the least-squares solution again
yields acceptable solutions.

We attempt to show that this inversion technique is a poten-
tially viable solution to real seismic inverse problems. Although
very low frequencies are required, they are not below the range
of modern recording equipment. The question of whether solu-
tions in the low-frequency limit are meaningful is answered
here in the positive by the results presented. An explanation
of the intuitive meaning of zero-limit solutions is a topic of
ongoing discussion and is not attempted here.

2. THEORY

This section contains the theoretical basis of our inversion.
The goal is to find the velocity distribution that produces the
reflected pressure waves measured at the surface of the earth
when the earth is excited with a seismic source. The problems
considered are a point source in a 3D medium and a plane
wave source in a 1D medium. Subsequent investigations are
limited to the 3D formulation.

2.1. Three-Dimensional Inverse Theory

Solution of the sealar wave equation, the inhomogeneous
Helmholtz equation for a scalar wavefield # = u (w, x. y), for
a point source function at location X = (x;, Xy, x3), assuming
constant density through a medium with velocity ¢ is [16]

u=—8x -y (1

Vi + —
TR

where ¥y = (y1, 3, »») is the receiver location and o is the
angular frequency. Given a velocity distribution of the form
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%) = (1 + v(x), @)

where ¢, is a constant background velocity and v(x) the velocity
perturbation from ¢, at location x, then, after transformation
and rearrangement of Eq. (1), the Lippman—Schwinger equation
[6] with scattering potential v is

u=g+ik ﬁ: dz g(x, Z)v(z)uiz, ¥), (3

where g is the three-dimensional Green’s function and z =
(z), 72, #3} is a spatial vector. The Born approximation results
from assuming that, to first order, 4 can be approximated by g.

After subtracting the direct arrival from the scattered field
and taking the 2D Fourier transform of the zero frequency
limit of the ratio of the reflected data and the square of the
wavenumber, F(p’, 4/2) can be obtained from u(w, X, y) (Ap-
pendix A). Then the solution for the perturbation is (when it has
compact support; i.e., it is defined within a ciosed region) [16]

v(z)=if”f+md T dg O g12) explaz — ip’ 1)
o)A T dg (' /) explqz — i(p’ 2,

€Y
where p’ = (p,. p;) are Fourier transform variables, ¢ is a
Laplace transform variable, z = —z;, ¢ > 0 is a constant, and

z' = (7, z2). The velocity perturbation v(z) is given as a 2D
inverse spatial Fourier transform followed by an inverse 1D
spatial Laplace transform. '

2.2, Lateral Velocity Homogeneity

In this section the problem is simplified to a 1D space. The
procedure will be very similar to that described above, except
the velocity is assumed to be laterally homogeneous. The 1D
scalar wave equation replaces the corresponding 3D equation
of the previous section. The solution is found to be simply an
inverse spatial Laplace transform.

Let the velocity be laterally homogeneous, so that

vlx,, X2, X3) = v(xs). {(5)

Now, consider the 1D, scalar, constant-density, Helmholtz
equation

{VE+ &1 + v(x)hu(x) = —8(x). (6)

Since the velocity is independent of x; and x,, the two-dimen-
sional Fourier transform of Eq. (6) is

2
[d—2 — M+ kzv] U(A, x3) = —8(x3), )
dX3
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where A is the two-dimensional transform vector. The corre-
sponding Lippman—Schwinger equation is

Ulh, xp) = g’} + 2 J.i: dzyg’(x; — z)0(z)U, (8)

where the 1D Green’s function is of the form

exp(—i(k* — AN | x;5])
2i(k2 —_ ‘\2)1.'2 4

g'lx) = A (9)

Taking the low frequency limit gives

L U—g¢
f(/\exa):lkljgl 5

= tim [ " dzg(x — 2u(zdg(x) (10)

where

glxs) = ﬁexp(— BIE

an
If fis measured at the surface so that x; = 0, then Eq. (10} be-
comes

v = [ deep(-20Al ). (2

By making the changes of variables, 2|A| = g for A > 0,
and u = —z;, and assuming that, for z; > 0, v(x;) = 0, a
simpler expression

g igl2) = f: du v(—u) explqu) (13

is obtained. Let G (g) = ¢°F(g/2). The solution for v(z;) can
then be written as an inverse Laplace transform,
(14)

= —Zi

v(u) = 2L"(G(g)),

3. ANALYTICAL EXAMPLE

The theoretical solution, Eq. (14), can be tested analytically.
An analytical forward solution to the scalar wave-equation from
[9] for two liquid half-spaces is used to generate ‘‘data’ for
the inverse problem in [16]. The solutien is expressed in the
Fourier—Bessel transform domain and can be used to find the
transform of the observed function F in Eq. (4). The problem
here is to find the velocity perturbation, v(z), given the analyti-
cal forward wavefield solution of the wave equation, F.

The solution simplifies to

G¢Fgl2)y=4 f: du exp(—quyv(—u), (15)
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where g is the Laplace transform variable in Eq. (4) and when
cylindrical symmetry is assumed (Appendix A). Indeed, this is
quite similar to Eq. (13) which is the analogous 1D formulation.

The low frequency limit of the analytical solution (Appendix
B) from 9] is

(G2 = Ack(as™ — ard) %’9 (16)

where % is the depth to the interface of the half-spaces, g is
the velocity of the upper half-space, and «» is the velocity of
the lower half-space. This expression provides the *‘data’’ F
for the analytical test of the inversion. Substituting Eq. (15)
into (16) yields

) %;qi = J: duexp(—quyv(—u). (17)

c¥er? — &

Using the Laplace transform pair [1],

. 0, 0<r<k,
[ (M) = 5D = (18)
s 1, t>k,
the solution for v, if ¢y = ay, 1s
0 forO<u<h
v(—u) =4 (& L)
= - >
(a% l) foru>h

which is exactly the original perturbation. Thus the inversion
[16] exactly solves the inverse of the forward problem given
by [9].

4. NUMERICAL EXAMPLE

In this section, the laterally homogeneous velocity perturba-
tion assumed in the previous section is substituted into the
Laplace equation (15). This allows the problem to be expressed
as a general non-linear equation which can be solved iteratively.

Since the development of the non-linear equation is simple
and straightforward, this solution method allows the theory [16]
to be tested. H solving the inverse problem in this way proves
to be successful, then solving the full analytical equation will
be the next step. Solving with the exact equation will require
integrating the Laplace transform [8, 10].

Assume the velocity perturbation is a series of step functions

y
o) =4 X, Hiu; wyv;, (20)
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where N is the number of steps and H(u; u) are the step
functions at each depth, u;. Then Eq. (15) becomes

N
FFGI2) = Glg) =4S v, f " du H(ugsu0) exp(—qus)
= @1

N
=4 2‘ v; g~ exp(—quy).

If G(g) is discretized, then this equation can be solved itera-
tively; the non-linear inversion problem is

N
Glgy =4 Z,} v exp(—gu,). (22)
To solve a general non-linear equation of the form
f(m) = d, (23)

where m are model parameters to be solved and d are the data,
and given an initial estimate m®, a Taylor’s expansion is
made [14]

(fm) =~ fim;®) + Vilm — m{¥] = {m7) + F,[m — m].
If Am,.; = [m — m], then

FAm,, =d — f{im),

misil = mf[ + Am,,H.

If the data are independent and have uniform variance then the
least-squares solution is

m;%, = [FF,]7'Fi[d — f(m;)] + m" .
For the current problem,
m = (u,v),

_ o _ (2 \exp(—gh)
d = Glg) = (giF(g;/) =4 (a% 1) -~—q ,
f=(flg))flg) =4 20 vig; ' exp(—gu),

of,
Vi) = F. () = .

For u,
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FIG. 1. Three-dimensional model used to generate the analytical and nu-
merical datasets.

% = —dv; exp(—qu,),

and for v,

3
a—i = 4q" exp(—quy).

A non-linear, least-squares method is a search for a best-fit
solution under a particular norm. An easy way to visualize this
search is to look at the error

e = f(m) — f(m:). (24)
Assume that m is the solution to Eq. (24), then e = 0 when

m:" = m, the correct solution. Since d are exact for the analyti-
cal case above, d = f{m) and

e=fmH —d=0
when m*' = m. The error surface, E, is defined as
E(m) = fe(m)].

Thus the position of a zero in the error surface E locates the
correct model parameters, m.

Let the input data be defined as Eq. (16) in the previous
section. Substituting Eq. (16) into (21) and letting N = 1 gives

= v g 'exp(—qu). (25)

clag® — ar®) —-eXp(q_qh)

The error is zero when the parameters are exact (when ¥ = h
and v = a5 — a7 ).

As an example, consider a single-layer over a half-space with
velocities of 2000 m/s above and 3000 m/s below a reflector at
adepth of 350 m (Fig. 1). Figure 2 presents several error-surface
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FIG. 2. Relative error surfaces (normalized to a maximum of ]1,0) for the analytical dataset as a function of wavenumber, ¥ = w/v. The correct solution

is 350 m and 3000 m/s.

solutions to the corresponding non-linear, inverse problem with
analytically defined data for various values of the background
wavenumber k = w/cy. In this figure and all similar ones follow-
ing, the vertical axis is the velocity of the medium below the
reflector calculated from the velocity perturbation [Eq. (19)].
The horizontal axis is the depth of the refiector, and gray scales
give the amplitude of the error. The model parameters range

+10% from the true solution. An absolute minimum is located
at the correct model parameter values as expected [Eq. (25)];
the minimum is found at the bottom of a trough extending from
the top to the bottom of the error surface. Because the error
surfaces are smooth, the non-linear inversion process will be
stable.

Error surfaces for non-zero values of & were produced from
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analytical data with the general analytical wave-equation solu-
tion without the zero frequency limit (Appendix B). They all
have the same character as for £ = 0 although, not surprisingly,
the location of the central minimum moves away from the
correct solution. These error surfaces are found over a range
of low frequencies (Figs. 2b-2f) and show the same character
as the zero-frequency case (Fig. 2a), but the minimum locations
diverge from the correct ones for & > 0.001 radians/m. The
absolute minimum error solutions are still found within an error
of less than 10% up to £ = 0.001 radians/m.

5. SYNTHETIC DATASET EXAMPLES

The evaluation of the solution [16] is continued in this section
with a dataset generated by a 3D, scalar, finite-difference, for-
ward-modeling program [3]. The first model is the same as that
used in the analytic example above (Fig. 1). The 3D grid has
101 by 101 by 75 nodes with a grid spacing of 50 m. The
impulsive source is located at the center of the grid (X = 0,
Y = 0) at a depth of 50 m. The time section was generated for
800 time steps at 0.0025 s intervals for a total time of 2 s, The
representative reflection section at ¥ = 0, Z = 0 is shown in
Fig. 3a.

A second section was generated with a constant velocity
model of 2000 m/s. This was subtracted from the reflective
model to remove the direct wave (Fig. 3b). The periodic prop-
erty of the discrete, 3D spatial Fourier transform to be applied
allows the dataset to be reduced to one spatial quadrant since
all four quadrants are symmetric. The remaining dataset was
pseudo-deconvolved by replacing each trace with a spike of
amplitude equal to the peak amplitude of the trace. The spike
was located at the time of onset of the arrival of the reflected
wavelet (Fig. 3c). The final step to prepare the data for input
to the inversion was to perform a 3D Fourier transform of the
X=0 and Y = 0 quadrant for the 32 by 32 near-offset grid
locations and 1024 zero-padded time samples.

The input to the non-linear problem consists of a subset of
the 3D Fourier transform which can be viewed as a stack of
planes, each of which corresponds to an increasing temporal
frequency value. Each plane contains the offset wavenumber
vector, k. Appendix A shows that the independent variable
g of Eq. (21) is ciosely related to the offset wavenumber; ¢ =
|ki. A range of low-frequency planes were subjected to the
inversion algorithm. Since the dataset is radially symmetric,
the data along the line k, = (k,, k, = 0) may be used as input
data to avoid interpolation.

Error surfaces may be used to select the best solution, which
is determined by the mode! parameters that minimize the error.
Since there are only two parameters in this example (the inter-
face depth and the lower-layer velocity) this solution method
is simple and observable from inspection. However, it is neces-
sary to solve for a third parameter, a source-amplitude-depen-
dent scaling factor applied to the dataset, to make the data
consistent with the analytical theory. Proper scaling requires

.
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FIG. 3. Slices of seismograms along the X-axis from the center, generated
from the model in Fig. 1: {a) total wavefield showing direct wave and reflection;
(b) reflected wave only afler subtracting the direct wave; (c} pseudo-decon-
volved reflection.

analysis of the relation between the source time wavelet and
the amplitude of its deconvolved amplitude (spike).

The scale factor was estimated in the following way. Let the
solution be assumed known, a priori, to within #10%. Since
the velocity of the upper layer is also assumed to be known,
the reflector depth can be estimated from the seismogram (see
the Discussion). Then, the scale factor that minimizes the error
over the entire velocity range of the estimated depth is used as
the scale factor. The error to be minimized is the absolute error
normalized by the scale factor (the relative error), since the
absolute error is proportional to the scale factor.

Error surfaces for values of k = w/c, of zero and 0.0049135
are presented in Figs. 4aand 4b, respectively. Eachof the surfaces
has been independently normalized to a maximum value of one.
In each figure, a prominent trough is superimposed on a sloping
trend that increases from low velocity and shallow depths to
higher velocities and deeper depths. As a result of the overall
trend, the absolute minimum is located at the lower left end of
the trough as shown in both figures, A locus of points defined as
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numerical dataset with a depth of 350 m for two wavenumbers.

the axis of the trough passes very close to the location for each
pair of correct parameter values, and a local minimum is distin-
guishable within that locus in the vicinity of the same location.

Figure 5 shows the relative error for each of the three parame-
ters (depth, velocity, scale factor) independently. For the depth
parameter, the relative error shown in Fig. 5a is the minimum
relative error across the entire surface as a function of velocity.
The depth error graph illustrates the trough-like nature of the
error surface. For the velocity parameter, the relative error
shown in Fig. 5b is the minimum relative error across the
entire surface as a function of depth. The velocity error graph
illustrates the sloping trend of the trough locus and the difficulty
of finding a local minimum on the error surface. The scale
factor error in Fig. 5¢ was computed with the known, correct
parameter values of velocity and depth,

Error surfaces for reflector depths of 250 and 450 m are shown
in Fig. 6 for the lowest wavenumber values. These are similar to
the previous case for a depth of 350 m (Fig. 4a) in that they have
a trough tending upward from lower left to upper right, and they
have local minima near the correct parameter values.

Error surfaces for all of the synthetic datasets show a striking
similarity to the error surfaces generated from the analytical
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ones. The error trends from low to high parameter values are
much steeper for the synthetic cases, but local minima are
indicated near the correct parameter values. As in the analytic
case, the error surfaces are smooth, so a non-linear, iterative
process would be stable.

This numerical inversion was tested in the presence of
noise. Several levels of random noise were added to the
spiked (pseudo-deconvolved) dataset for a reflector depth of
350 m. The noise was distributed uniformly throughout the
frequency spectrum. The noise level is defined as a percentage
of the peak amplitude of the dataset. Figure 7a shows the
noisy section and the corresponding error surface for 10%
noise. Comparing to Fig. 4a, the surface appears smoothed
by the noise addition. The trough is still present but only
a hint of the local minimum remains. Similarly, Fig. 7b
shows more of the same smoothing produced by the addition
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of 40% noise. Even for a noise level of 80% (Fig. 7c), the
trough-like feature still appears.

6. DISCUSSION

During the computations of the inversion, it was observed
that the position and character of the trough in the error
surface were relatively insensitive to a bulk-time shift of
the pseudo-deconvolved data. Thus, the reflector dcpth is
constrained primarily by the hyperbolic shape of the reflection
travel times, rather than by their absolute time position. This
is consistent with the fact that the phase of the signal, which
contains the absolute time information, is, by definition, zero
at zero frequency. Consequently, adequate resolution of depth
is contingent upon having sufficient spatial aperture in the ob-
servations. .

Because the velocity of the upper layer is known, the depth
of the reflector can be simply determined from the observed,
normal-incidence, reflection travel time. This information can
be reinserted into the inversion as a constraint; then by finding
the intersection of the minimum error locus with the depth

G;RAY AND MCMECHAN

deduced from the reflection times, the solution for the velocity
parameter can be determined. The reflection amplitudes are
then the major determinants of the velocity of the lower layer.,
In this way, the inversion is compiete, and both the depth and
velocity can be accurately estimated.

Many of the low frequency datasets give similar error
surfaces and nearly correct solutions. Choosing the best dataset
and selution without any additional previous knowledge could
be difficult. 1t is conceivable that weighted averages of the
corresponding solutions could improve the resolution but,
again, choosing the right datasets and weighting function
could be difficult.

For the synthetic forward-modeling experiment, several
sources of error can be identified such as the approximation
of the scale factor. By simultaneously solving for all three
parameters, an exact scale factor can be found that minimizes
the error from scaling. Indeed, when a scale factor minimizing
the error for the known depth and velocity parameters is
estimated, better resolution of the experimental solution is
achieved,

Another source of error comes from estimating reflection
onset times. However, as mentioned above, the error surface
is fairly independent of bulk-time shift errors.

This investigation of the potential of a low-frequency inver-
sion algorithm [16] for the case of a single horizontal interface
has demonstrated that it can be used to solve realistic seismic
inversion problems. Although it works best in the zero fre-
quency limit, it has been shown to work on finite frequencies
extending into the potentially recordable range. It has also been
shown to work for large velocity steps and in the presence of
high-amplitude random noise.

With the one interface solution presented, multiple-layer
models could be solved by a layer-stripping method, solving
for each deeper layer after the parameters of the shallower ones
are estimated. Alternately, the numerical inversion could be
generalized to multiple horizontal surfaces simply by adding
more parameters to the non-linear inverse system. For such a
vastly expanded inversion, guaranteeing the convergence of the
non-linear system would be much more difficult. However,
by computing the inverse Laplace transform numerically, the
velocity profile could be found directly.

This investigation has produced a potentially viable tech-
nique for solving for depth and velocity of the layers of an
earth model. The inversion technique has been demonstrated
for both anaiytically and numerically computed data. For poten-
tially observable low frequencies, the error surface of the nu-
merical dataset is quite similar to that computed analytically
and has a solution very close to the correct parameters. Even
in the presence of high-frequency random noise, solutions
are obtainable.

Further investigation of this technique will include struc-
tures that are much deeper than the predominant wavelength,
true deconvolution of the data and other waveform effects,
sensitivity to background velocity, reflection beyond the
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FIG. 7.

Seismograms of the pseudo-deconvolved numerical zero-wavenumber datasets with random noise added along with the associated relative error

surfaces for: {a) 10% noise level; (b) 40% noise level; and (c) 80% noise level. Seismogram amplitudes in (b} and (c) are scaled by 0.5 and 0.3, respectively,

of those in (a).

critical angle, and the effects of low-frequency noise. Clearly,
sufficiently large errors in the low-frequency part of the data
will produce incorrect solutions. Effects of random low-
frequency noise may be reduced by fitting over multiple

independent observations, but this is one point that needs
further investigation.

7. CONCLUSION
The theoretical importance of this solution [16] is that it is
exact in the low-frequency limit; no approximations are needed
for the solution. The goal of this research was to investigate
the potential of this theoretical solution for solving practical
problems. In theory, a complete velocity field for an arbitrary
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subsurface structure could be found by performing the complete
inversion of two inverse Fourier transforms and one inverse
Laplace transform on the data. The only requirement is that
the data contain sufficiently low frequency information and that
this input be reliable.

The foregoing results encourage continuing effort toward
the ultimate goal of inversion of actual field data. Since low-
frequency data are required by this technique, earthquake or
very-long-offset data may be especially well-suited for analysis
by this method.

APPENDIX A

It has been shown in [16] that for a scalar wavefield u# =
u(X, y¥) with a source at X = (x|, X2, x3) and receiver at y =
(¥1, ¥z, ¥3), 2 medium with velocity c(x) and a given reference
or background velocity ¢, that

v(z)

—_—— (Al
x—Al—y AP

f(x,y) = l6m? hm( e ): Lxdz

where z = (71, 72, z;} is @ spatial variable of integration, v =
cifet (x) — 1is the perturbation velocity, and wavenumber k =
w/c,. The three-dimensional Green's function is

exp(ik [x = yl)

A2
drlx —yl (A

gx,y)=

Note that (1 — g) is a measurable quantity, and thus fis comput-
able and assumed to be given.

Equation (A1) can be solved [16] by Fourier transforming
over x and y where x } A and y } m are the corresponding
transformn variables. After a change of variables,

p=Atm, =t ps= |A| Pa= |ﬂ|,
the four-dimensional field is projected to a three-dimensional
subfield using

g/2 = py = pa.

One implication of this projection is that the source wavenum-

ber is required to be the same as the receiver wavenumber. This

implies that the solution applies to waves that obey Snell’s law.
The transformed equation (Al) is

2
L F(p),ps.qi2.9/2)
4 (A3)

— = - 1 *ee teo ! . ! ¥ r
= fﬂ du exp(*qu)ﬁf_m f_m dz’ explip’ - z's)] viz’, —u),

where p’° = (p1, p» and 2’ = (2, ). The right-hand side
of Eq. (A3), with cylindrical symmetry, contains the Fourier

GRAY AND MCMECHAN

transform of the Dirac delta function, since v(z’, —u) is indepen-
dent of 2’. Thus

FF(g2) =14 f " du exp(—qu) v(—u) (Ad)

which gives Eq. (15) and is of a form similar to Eq. (13).

An interpretation of g is needed. The transform coordinates,
(P1» P2» D1, Ps), With the above restrictions, correspond to mid-
point-offset domain wavenumbers, where the midpoint wave-
number is k,, = Kk, + k., the offset wavenumber is k; = k, —
k., k, = A is the source wavenumber, and k, = gt is the receiver
wavenumber. Since py = pq, [A| = |l [k = [k, and [k,| =
K, — k| = k| + ik + [k = 2 lk] = 2ps, then g = [k

AFPENDIX B

The analytic solution, ¢, to the 3D, scalar wave equation,
for the case of two half-spaces with velocities &; and densities
p: for the ith layer and a source at height 4 above the lower
half-space as given in Ewing er al. [9] is

KJO(K r)

(BI)

)= o+ |, dh[A - ]exp( nie + ) <D

where »; = (& — k)", K, = w/a, A = p/p; = |, and Kis
the radial wavenumber. Constant density of the medium and
equal depth for source and receivers are assumed. The direct
wave (the free-space Green’s function) is identified as dby.
Then, following Eq. (A1),

£() = 1677 lim (%@)

l fw v — | exp(—2uh)
=1 j
o7’ lil-ls‘lol k? dr [yl + Vz] 1

If fis the Fourier transform of I (this convention is consistent
with [16]), then

(B2)

K Jo(k r).

fo = 1T dEF@expix- ®3)

and
F&) = JM dx f(x) exp(—i £+ X)
47%) -= ’

where £ = (&, &), X = (%1, x). Then, for p = |£], r = Ix],
and cylindrical symmetry, the relationship

fy=aa? [" dp F(p) pdopr) (B4
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holds between the double Fourier transform and the Fourier—
Bessel transform. Comparing Eq. (B2) and Eq. (B4), fand F
are seen to be transform pairs where x and p play the same
roles; thus

e [ L exp(—2uh)
Using L’Hopital’s rule, the limit is found to be
-2
F) = ot — aihy ZRE2XE), (B6)

248

If F is a transform over x and y, and f is radially symmetric
with respect to x

F(A, ) = Ji: dx J i: dy f(x, y) exp(—ix - &) exp(—iy - p)
o (B7
= [T ayfrexpt=iy-m, x=0.
Then
Fo) = [ dp Fa explipe - ). (BS)

Substituting x = y and g = £ into Eq. (B8) and comparing
with Eq. (B4),
Fip) = F(lu)). (BY)

Since lul = ¢/2 = &,
FF(ql?) = 4c(ag® — ai?) 3—11(]1‘7_’13 (B10)

which is Eq. (16} in the text.
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